Sharp Morrey-Sobolev inequalities and eigenvalue problems on Riemannian- Finsler manifolds with nonnegative Ricci curvature
نویسندگان
چکیده
Combining the sharp isoperimetric inequality established by Z. Balogh and A. Kristály [Math. Ann., in press, doi:10.1007/s00208-022-02380-1] with an anisotropic symmetrization argument, we establish Morrey–Sobolev inequalities on n-dimensional Finsler manifolds having nonnegative n-Ricci curvature. A byproduct of this method is a Hardy–Sobolev-type same geometric setting. As applications, using variational arguments, guarantee existence/multiplicity solutions for certain eigenvalue problems elliptic PDEs involving Finsler–Laplace operator. Our results are also new Riemannian
منابع مشابه
Sharp Sobolev Trace Inequalities on Riemannian Manifolds with Boundaries
In this paper, we establish some sharp Sobolev trace inequalities on n-dimensional, compact Riemannian manifolds with smooth boundaries. More specifically, let q = 2(n− 1)/(n− 2) , 1 S = inf {∫ R n + |∇u| : ∇u ∈ L(R+) , ∫ ∂R+ |u| = 1 } . We establish for any Riemannian manifold with a smooth boundary, denoted as (M,g), that there exists some constant A = A(M,g) > 0, ( ∫ ∂M |u| dsg) ≤ S ∫ M |∇gu...
متن کاملA sharp Sobolev inequality on Riemannian manifolds
Let (M, g) be a smooth compact Riemannian manifold without boundary of dimension n ≥ 6. We prove that ‖u‖ L2 ∗ (M,g) ≤ K 2 ∫ M { |∇gu| 2 + c(n)Rgu 2 } dvg + A‖u‖ 2 L2n/(n+2)(M,g), for all u ∈ H(M), where 2 = 2n/(n − 2), c(n) = (n − 2)/[4(n − 1)], Rg is the scalar curvature, K −1 = inf ‖∇u‖L2(Rn)‖u‖ −1 L2n/(n−2)(Rn) and A > 0 is a constant depending on (M, g) only. The inequality is sharp in the...
متن کاملConformally Flat Manifolds with Nonnegative Ricci Curvature
We show that complete conformally flat manifolds of dimension n > 3 with nonnegative Ricci curvature enjoy nice rigidity properties: they are either flat, or locally isometric to a product of a sphere and a line, or are globally conformally equivalent to R n or a spherical spaceform Sn/Γ. This extends previous results due to Q.-M. Cheng and B.-L. Chen and X.-P. Zhu. In this note, we study compl...
متن کاملClassification of Stable Solutions for Boundary Value Problems with Nonlinear Boundary Conditions on Riemannian Manifolds with Nonnegative Ricci Curvature
We present a geometric formula of Poincaré type, which is inspired by a classical work of Sternberg and Zumbrun, and we provide a classification result of stable solutions of linear elliptic problems with nonlinear Robin conditions on Riemannian manifolds with nonnegative Ricci curvature. The result obtained here is a refinement of a result recently established by Bandle, Mastrolia, Monticelli ...
متن کاملOn Stretch curvature of Finsler manifolds
In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied. In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Contemporary Mathematics
سال: 2022
ISSN: ['0219-1997', '1793-6683']
DOI: https://doi.org/10.1142/s0219199722500638